Title:
RF Passives on Silicon--The Intended and the Unintended Burghartz, Joachim N.

URL:
Access to IEEE Educational Courses is now available via an institutional subscription to IEEE Expert Now. If your company has a subscription to IEEE Expert Now with an LMS, access here.
Already have a subscription, or purchased course individually as an IEEE member? Access Course Now
For IEEE Members: Price: US $69.95, Buy Now

Institute:
Sponsored by: IEEE Electron Devices Society
Presented at: IEEE Bipolar / BiCMOS Circuits and Technology Meeting
Publication Date: Jun-2008

Price: $69.95 Duration/Length: Run Time: 1:00:00

Feature/Keywords:
Keywords
RF ICs, microwave integrated circuits, passive components, quality factor, loss, skin effect, eddy currents, capacitive substrate currents, self-resonance, coupling, crosstalk, ferromagnetics, transmission lines, periodic structures, equivalent circuit models

More info/Abstract:
Abstract
In typical radio-frequency (RF) front-end circuits, the passive components outnumber the active devices. They occupy a major fraction of the total circuit area, and their low quality factor (Q) limits the circuit performance. Furthermore, these (intended) passive components can easily be perturbed by the interconnects feeding into them and coupled together by the (unintended) magnetic fields around those interconnects, or by (unintended) capacitive currents through the silicon substrate. One therefore needs to cope with both the optimization of the passive components, as far as Q and chip area consumption go, and the minimization of the crosstalk effects. This tutorial illustrates the design principles that lead to optimized integrated passive components on the basis of maximum Q and optimum RF isolation. Taking the well-established hybrid RF systems on printed circuit board (PCB) as a reference, the most commonly used passive components are discussed, and RF isolation techniques at chip and package level are explained.